尖峰神经网络是一种神经形态计算,据信可以提高智能水平,并为量子计算提供了前提。在这项工作中,我们通过设计一个光学尖峰神经网络来解决此问题,并证明它可以用于加速计算速度,尤其是在组合优化问题上。在这里,尖峰神经网络是由反对称耦合的退化光学参数振荡器脉冲和耗散脉冲构建的。选择非线性转移函数以减轻幅度不均匀性,并根据峰值神经元的动态行为破坏所得的局部最小值。从数值上证明,尖峰神经网络协会机器在组合优化问题上具有出色的性能,预计将为神经计算和光学计算提供新的应用程序。
translated by 谷歌翻译
模仿学习是一种广泛使用的政策学习方法,它使智能代理能够从专家演示中获取复杂的技能。模仿学习算法的输入通常由当前的观察和历史观察组成,因为最近的观察结果可能不含足够的信息。图像观察尤其是这种情况,其中单个图像仅包含场景的一个视图,并且缺乏运动信息和对象阻塞。从理论上讲,为模仿学习代理提供多个观察将带来更好的性能。然而,令人惊讶的是,人们发现有时从观察史中模仿的表现比最近的观察结果差。在本文中,我们从神经网络角度的信息流中解释了这种现象。我们还提出了一种新颖的模仿学习神经网络体系结构,该架构不会因设计而遭受这个问题的困扰。此外,我们的方法缩放到高维图像观测值。最后,我们对两个广泛使用的模拟器Carla和Mujoco进行了基准测试,它成功地减轻了模仿问题并超过了现有的解决方案。
translated by 谷歌翻译
在跨越监督分类和顺序控制的应用程序中,据报道,深度学习发现了“快捷方式”解决方案,这些解决方案在数据分布的较小变化下灾难性地失败。在本文中,我们从经验上表明,可以通过提供从关键输入特征计算出的其他“启动”功能,通常是粗略的输出估计,以避免DNNs诱发了差异。启动依赖于这些与任务相关的关键输入特征的近似域知识,在实际设置中通常很容易获得。例如,可以将最近的帧优先于过去的视频输入中,以进行视觉模仿学习,或者在背景像素上进行图像分类的明显前景。关于NICO图像分类,Mujoco连续控制和Carla自动驾驶,我们的启动策略的效果要比几种流行的最先进的方法来选择和数据增强。我们将这些经验发现与DNN优化的最新理论结果联系起来,并从理论上说,启动启动通过创建更好,更简单的快捷方式来分散优化器的注意力。
translated by 谷歌翻译
在线广告中,自动竞标已成为广告商通过简单地表达高级活动目标和约束来优化其首选广告性能指标的重要工具。以前的作品从单个代理的视图中设计了自动竞争工具,而不会在代理之间建模相互影响。在本文中,我们从分布式多功能代理人的角度来看,请考虑这个问题,并提出一个常规$ \强调{m} $ ulti - $ \强调{a} $ gent加强学习框架,以便为$ clown {a} $ uto - $ \ Underline {b} $ IDDIND,即MAAB,了解自动竞标策略。首先,我们调查自动招标代理商之间的竞争与合作关系,并提出了一个温度定期的信用分配,以建立混合合作竞争范式。通过在代理商中仔细开展竞争和合作权衡,我们可以达到均衡状态,不仅担保个人广告商的实用程序,而且保证了系统性能(即社会福利)。其次,为避免竞争低价潜在勾结行为的合作,我们进一步提交了律师代理,为每位专家设定个性化招标酒吧,然后减轻由于合作而导致的收入退化。第三,要在大型广告系统中部署MAAB,我们提出了一种平均现场方法。通过将具有与平均自动竞标代理商相同的广告商进行分组,大规模广告商之间的互动大大简化,使得培训MAAB有效地培训。在离线工业数据集和阿里巴巴广告平台上进行了广泛的实验表明,我们的方法在社会福利和收入方面优于几种基线方法。
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there is no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion-batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译
In this paper, we investigate the joint device activity and data detection in massive machine-type communications (mMTC) with a one-phase non-coherent scheme, where data bits are embedded in the pilot sequences and the base station simultaneously detects active devices and their embedded data bits without explicit channel estimation. Due to the correlated sparsity pattern introduced by the non-coherent transmission scheme, the traditional approximate message passing (AMP) algorithm cannot achieve satisfactory performance. Therefore, we propose a deep learning (DL) modified AMP network (DL-mAMPnet) that enhances the detection performance by effectively exploiting the pilot activity correlation. The DL-mAMPnet is constructed by unfolding the AMP algorithm into a feedforward neural network, which combines the principled mathematical model of the AMP algorithm with the powerful learning capability, thereby benefiting from the advantages of both techniques. Trainable parameters are introduced in the DL-mAMPnet to approximate the correlated sparsity pattern and the large-scale fading coefficient. Moreover, a refinement module is designed to further advance the performance by utilizing the spatial feature caused by the correlated sparsity pattern. Simulation results demonstrate that the proposed DL-mAMPnet can significantly outperform traditional algorithms in terms of the symbol error rate performance.
translated by 谷歌翻译
Domain adaptation methods reduce domain shift typically by learning domain-invariant features. Most existing methods are built on distribution matching, e.g., adversarial domain adaptation, which tends to corrupt feature discriminability. In this paper, we propose Discriminative Radial Domain Adaptation (DRDR) which bridges source and target domains via a shared radial structure. It's motivated by the observation that as the model is trained to be progressively discriminative, features of different categories expand outwards in different directions, forming a radial structure. We show that transferring such an inherently discriminative structure would enable to enhance feature transferability and discriminability simultaneously. Specifically, we represent each domain with a global anchor and each category a local anchor to form a radial structure and reduce domain shift via structure matching. It consists of two parts, namely isometric transformation to align the structure globally and local refinement to match each category. To enhance the discriminability of the structure, we further encourage samples to cluster close to the corresponding local anchors based on optimal-transport assignment. Extensively experimenting on multiple benchmarks, our method is shown to consistently outperforms state-of-the-art approaches on varied tasks, including the typical unsupervised domain adaptation, multi-source domain adaptation, domain-agnostic learning, and domain generalization.
translated by 谷歌翻译
Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services which require low delay and high accuracy. Sampling rate adaption which dynamically configures the sampling rates of industrial IoT devices according to network conditions, is the key in minimizing the service delay. In this paper, we investigate the collaborative DNN inference problem in industrial IoT networks. To capture the channel variation and task arrival randomness, we formulate the problem as a constrained Markov decision process (CMDP). Specifically, sampling rate adaption, inference task offloading and edge computing resource allocation are jointly considered to minimize the average service delay while guaranteeing the long-term accuracy requirements of different inference services. Since CMDP cannot be directly solved by general reinforcement learning (RL) algorithms due to the intractable long-term constraints, we first transform the CMDP into an MDP by leveraging the Lyapunov optimization technique. Then, a deep RL-based algorithm is proposed to solve the MDP. To expedite the training process, an optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal edge computing resource allocation. Extensive simulation results are provided to demonstrate that the proposed RL-based algorithm can significantly reduce the average service delay while preserving long-term inference accuracy with a high probability.
translated by 谷歌翻译